Structural and functional plasticity of subcellular tethering, targeting and processing of RPGRIP1 by RPGR isoforms

نویسندگان

  • Hemangi Patil
  • Mallikarjuna R. Guruju
  • Kyoung-in Cho
  • Haiqing Yi
  • Andrew Orry
  • Hyesung Kim
  • Paulo A. Ferreira
چکیده

Mutations affecting the retinitis pigmentosa GTPase regulator-interacting protein 1 (RPGRIP1) interactome cause syndromic retinal dystrophies. RPGRIP1 interacts with the retinitis pigmentosa GTPase regulator (RPGR) through a domain homologous to RCC1 (RHD), a nucleotide exchange factor of Ran GTPase. However, functional relationships between RPGR and RPGRIP1 and their subcellular roles are lacking. We show by molecular modeling and analyses of RPGR disease-mutations that the RPGR-interacting domain (RID) of RPGRIP1 embraces multivalently the shared RHD of RPGR(1-19) and RPGR(ORF15) isoforms and the mutations are non-overlapping with the interface found between RCC1 and Ran GTPase. RPGR disease-mutations grouped into six classes based on their structural locations and differential impairment with RPGRIP1 interaction. RPGRIP1α(1) expression alone causes its profuse self-aggregation, an effect suppressed by co-expression of either RPGR isoform before and after RPGRIP1α(1) self-aggregation ensue. RPGR(1-19) localizes to the endoplasmic reticulum, whereas RPGR(ORF15) presents cytosolic distribution and they determine uniquely the subcellular co-localization of RPGRIP1α(1). Disease mutations in RPGR(1) (-19), RPGR(ORF15), or RID of RPGRIP1α(1), singly or in combination, exert distinct effects on the subcellular targeting, co-localization or tethering of RPGRIP1α(1) with RPGR(1-19) or RPGR(ORF15) in kidney, photoreceptor and hepatocyte cell lines. Additionally, RPGR(ORF15), but not RPGR(1-19), protects the RID of RPGRIP1α(1) from limited proteolysis. These studies define RPGR- and cell-type-dependent targeting pathways with structural and functional plasticity modulating the expression of mutations in RPGR and RPGRIP1. Further, RPGR isoforms distinctively determine the subcellular targeting of RPGRIP1α(1,) with deficits in RPGR(ORF15)-dependent intracellular localization of RPGRIP1α(1) contributing to pathomechanisms shared by etiologically distinct syndromic retinal dystrophies.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

RPGRIP1s with distinct neuronal localization and biochemical properties associate selectively with RanBP2 in amacrine neurons.

RPGR and RPGRIP1 are molecular partners with vital roles in retinal function. Mutations in RPGR are implicated in heterogeneous retinal phenotypes, while those in RPGRIP1 lead to Leber congenital amaurosis. RPGR and RPGRIP1s differentially localize in photoreceptors among species. This may contribute to phenotype disparities among species bearing mutations in RPGR. However, it cannot account fo...

متن کامل

Limited proteolysis differentially modulates the stability and subcellular localization of domains of RPGRIP1 that are distinctly affected by mutations in Leber's congenital amaurosis.

The retinitis pigmentosa GTPase regulator (RPGR) protein interacts with the retinitis pigmentosa GTPase regulator interacting protein-1 (RPGRIP1). Genetic lesions in the cognate genes lead to distinct and severe human retinal dystrophies. The biological role of these proteins in retinal function and pathogenesis of retinal diseases is elusive. Here, we present the first physiological assay of t...

متن کامل

Identification of novel murine- and human-specific RPGRIP1 splice variants with distinct expression profiles and subcellular localization.

PURPOSE Mutations in RPGRIP1 cause Leber congenital amaurosis. The human and bovine RPGRIP1 undergo alternative splicing. A single murine rpgrip1 transcript has been reported, but distinct expression profiles of RPGRIP1 isoforms exist between species in the retina. To elucidate the heterogeneity of RPGRIP1 isoforms and the degree of functional redundancy among these, we extended the analysis of...

متن کامل

RPGR ORF15 isoform co-localizes with RPGRIP1 at centrioles and basal bodies and interacts with nucleophosmin.

The ORF15 isoform of RPGR (RPGR(ORF15)) and RPGR interacting protein 1 (RPGRIP1) are mutated in a variety of retinal dystrophies but their functions are poorly understood. Here, we show that in cultured mammalian cells both RPGR(ORF15) and RPGRIP1 localize to centrioles. These localizations are resistant to the microtubule destabilizing drug nocodazole and persist throughout the cell cycle. RPG...

متن کامل

Insights into X-linked retinitis pigmentosa type 3, allied diseases and underlying pathomechanisms.

In the past decade, we have witnessed great advances in the identification of genes underlying numerous neurodegenerative diseases and the stark complexity determining genotype-phenotype relationships that lead to the impairment, and ultimately, premature death of neurons. However, significant challenges lie ahead in understanding the pathobiological and spatiotemporal processes triggered by ge...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 1  شماره 

صفحات  -

تاریخ انتشار 2012